568 research outputs found

    Magnetic field induced singlet - triplet phase transition in quasi one-dimensional organic superconductors

    Full text link
    We propose a theoretical model of quasi-one-dimensional superconductors, with attractive electron-electron interactions dominant in the singlet d-wave channel and sub-dominant in the p-wave channel. We discuss, in the mean field approximation, the effect of a magnetic field applied perpendicularly to the direction of the lowest conductivity. The lowest free energy phase corresponds to a singlet d-wave symmetry in low fields, but to a triplet symmetry in high fields. A first order singlet-triplet phase transition is expected at moderate applied fields of a few teslas. We propose to ascribe the recent critical field and NMR experimental data, observed in superconducting (TMTSF)2ClO4 to such an effect.Comment: 6 pages, 2 figures, accepted in EP

    The influence of differential rotation on the detectability of gravitational waves from the r-mode instability

    Get PDF
    Recently, it was shown that differential rotation is an unavoidable feature of nonlinear r-modes. We investigate the influence of this differential rotation on the detectability of gravitational waves emitted by a newly born, hot, rapidly-rotating neutron star, as it spins down due to the r-mode instability. We conclude that gravitational radiation may be detected by the advanced laser interferometer detector LIGO if the amount of differential rotation at the time the r-mode instability becomes active is not very high.Comment: 8 pages, 6 figures, revtex

    Transition from inspiral to plunge in precessing binaries of spinning black holes

    Full text link
    We investigate the non-adiabatic dynamics of spinning black hole binaries by using an analytical Hamiltonian completed with a radiation-reaction force, containing spin couplings, which matches the known rates of energy and angular momentum losses on quasi-circular orbits. We consider both a straightforward post-Newtonian-expanded Hamiltonian (including spin-dependent terms), and a version of the resummed post-Newtonian Hamiltonian defined by the Effective One-Body approach. We focus on the influence of spin terms onto the dynamics and waveforms. We evaluate the energy and angular momentum released during the final stage of inspiral and plunge. For an equal-mass binary the energy released between 40Hz and the frequency beyond which our analytical treatment becomes unreliable is found to be, when using the more reliable Effective One-Body dynamics: 0.6% M for anti-aligned maximally spinning black holes, 5% M for aligned maximally spinning black hole, and 1.8% M for non-spinning configurations. In confirmation of previous results, we find that, for all binaries considered, the dimensionless rotation parameter J/E^2 is always smaller than unity at the end of the inspiral, so that a Kerr black hole can form right after the inspiral phase. By matching a quasi-normal mode ringdown to the last reliable stages of the plunge, we construct complete waveforms approximately describing the gravitational wave signal emitted by the entire process of coalescence of precessing binaries of spinning black holes.Comment: 31 pages, 7 tables, and 13 figure

    Suspensions Thermal Noise in the LIGO Gravitational Wave Detector

    Full text link
    We present a calculation of the maximum sensitivity achievable by the LIGO Gravitational wave detector in construction, due to limiting thermal noise of its suspensions. We present a method to calculate thermal noise that allows the prediction of the suspension thermal noise in all its 6 degrees of freedom, from the energy dissipation due to the elasticity of the suspension wires. We show how this approach encompasses and explains previous ways to approximate the thermal noise limit in gravitational waver detectors. We show how this approach can be extended to more complicated suspensions to be used in future LIGO detectors.Comment: 28 pages, 13 figure

    QND and higher order effects for a nonlinear meter in an interferometric gravitational wave antenna

    Get PDF
    A new optical topology and signal readout strategy for a laser interferometer gravitational wave detector were proposed recently by Braginsky and Khalili . Their method is based on using a nonlinear medium inside a microwave oscillator to detect the gravitational-wave-induced spatial shift of the interferometer's standing optical wave. This paper proposes a quantum nondemolition (QND) scheme that could be realistically used for such a readout device and discusses a "fundamental" sensitivity limit imposed by a higher order optical effect.Comment: LaTex, 17 pages, 3 figure

    On the detectability of quantum spacetime foam with gravitational-wave interferometers

    Get PDF
    We discuss a recent provocative suggestion by Amelino-Camelia and others that classical spacetime may break down into ``quantum foam'' on distance scales many orders of magnitude larger than the Planck length, leading to effects which could be detected using large gravitational wave interferometers. This suggestion is based on a quantum uncertainty limit obtained by Wigner using a quantum clock in a gedanken timing experiment. Wigner's limit, however, is based on two unrealistic and unneccessary assumptions: that the clock is free to move, and that it does not interact with the environment. Removing either of these assumptions makes the uncertainty limit invalid, and removes the basis for Amelino-Camelia's suggestion.Comment: Submitted to Phys. Lett.

    The Shapiro Conjecture: Prompt or Delayed Collapse in the head-on collision of neutron stars?

    Get PDF
    We study the question of prompt vs. delayed collapse in the head-on collision of two neutron stars. We show that the prompt formation of a black hole is possible, contrary to a conjecture of Shapiro which claims that collapse is delayed until after neutrino cooling. We discuss the insight provided by Shapiro's conjecture and its limitation. An understanding of the limitation of the conjecture is provided in terms of the many time scales involved in the problem. General relativistic simulations in the Einstein theory with the full set of Einstein equations coupled to the general relativistic hydrodynamic equations are carried out in our study.Comment: 4 pages, 7 figure

    Effects of mode degeneracy in the LIGO Livingston Observatory recycling cavity

    Get PDF
    We analyze the electromagnetic fields in a Pound-Drever-Hall locked, marginally unstable, Fabry-Perot cavity as a function of small changes in the cavity length during resonance. More specifically, we compare the results of a detailed numerical model with the behavior of the recycling cavity of the Laser Interferometer Gravitational-wave Observatory (LIGO) detector that is located in Livingston, Louisiana. In the interferometer's normal mode of operation, the recycling cavity is stabilized by inducing a thermal lens in the cavity mirrors with an external CO2 laser. During the study described here, this thermal compensation system was not operating, causing the cavity to be marginally optically unstable and cavity modes to become degenerate. In contrast to stable optical cavities, the modal content of the resonating beam in the uncompensated recycling cavity is significantly altered by very small cavity length changes. This modifies the error signals used to control the cavity length in such a way that the zero crossing point is no longer the point of maximum power in the cavity nor is it the point where the input beam mode in the cavity is maximized.Comment: Eight pages in two-column format. Six color figures. To be published JOSA

    Sensitivity of spherical gravitational-wave detectors to a stochastic background of non-relativistic scalar radiation

    Get PDF
    We analyze the signal-to-noise ratio for a relic background of scalar gravitational radiation composed of massive, non-relativistic particles, interacting with the monopole mode of two resonant spherical detectors. We find that the possible signal is enhanced with respect to the differential mode of the interferometric detectors. This enhancement is due to: {\rm (a)} the absence of the signal suppression, for non-relativistic scalars, with respect to a background of massless particles, and {\rm (b)} for flat enough spectra, a growth of the signal with the observation time faster than for a massless stochastic background.Comment: four pages, late

    Optical vernier technique for in-situ measurement of the length of long Fabry-Perot cavities

    Get PDF
    We propose a method for in-situ measurement of the length of kilometer size Fabry-Perot cavities in laser gravitational wave detectors. The method is based on the vernier, which occurs naturally when the laser incident on the cavity has a sideband. By changing the length of the cavity over several wavelengths we obtain a set of carrier resonances alternating with sideband resonances. From the measurement of the separation between the carrier and a sideband resonance we determine the length of the cavity. We apply the technique to the measurement of the length of a Fabry-Perot cavity in the Caltech 40m Interferometer and discuss the accuracy of the technique.Comment: LaTeX 2e, 12 pages, 4 figure
    • …
    corecore